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2.3 The Photon Model

The derived constants in chapter 2.2 suggest that the mechanism of the 7-
dimensional theory of relativity is scalable to all matter. Thus, the representation of
sine periodicity from cosmology with its wave behaviour is transferred to quanta in
the microcosm. This chapter explains the photon model, which results exclusively
from the relativistic framework conditions. This model overcomes the idea that
elementary particles are point particles. Instead, they are a contracting and
expanding hollow body oscillation consisting of superimposed harmonics. The
simplest form of these harmonics corresponds to the photon. In addition to the
dimension of time, a photon requires four spatial dimensions to describe its photon
field. This quantised photon field and its harmonic form a subspace U for a 6-
dimensional field vector, which also describes complex structures and networks of
several photons.

Photons are always 4-dimensional subspaces :

A 6-dimensional space has a 5-dimensional surface. It can contain numerous of 4-
dimensional subspaces U in the form of field bodies. The surface of such a 4-
dimensional subspace U is 3-dimensional. A fourth spatial dimension is required to
represent one or more such 4-dimensional rotation paths. The properties of real
photons are attributed to these rotating field bodies.

a) The surface of a 4-dimensional hollow sphere is 3-dimensional. It takes four
dimensions to map three 4-dimensional rotation paths.

b) The surface of a 5-dimensional hollow sphere is 4-dimensional. It takes five
dimensions to map four 4-dimensional rotation paths.

c) The surface of a 6-dimensional hollow sphere is 5-dimensional. It takes six
dimensions to map five 4-dimensional rotation paths.

For a photon, its 4-dimensional subspace in the 6-dimensional field-space means
that its quantised angular momentum is equal to that of the universe; its effect takes
place within the gravitational potential of the universe; and the pointer direction of its
field exchange is dependent on the periodic formation of the universe.

Integration of a photon into the field-space:

The first challenge is to integrate an electromagnetic wave that follows a wave
function into a reference system that takes into account the relationships shown in
Figure 1.5. The relevant method is to represent a wave as a mathematically periodic
rotation. With a relativistic rotational motion, the angular momentum L can be
modelled for its relativistic inertial force. The angular momentum L has the unit Js for
an effect. Within the framework of FSM, the mechanism of angular momentum in the
macrocosm can be transferred to the angular momentum of the microcosm. This is
because the photons must follow the angular momentum of the universe in
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accordance with the law of conservation of angular momentum. The original angular
momentum remains the same, regardless of any additional energy. As the angular
momentum of each photon must be maintained relative to the angular momentum of
the universe during its own motion, space-time deforms the field-space at the
location of the field. The greater the intrinsic motion of a photon in the form of a
higher frequency, the more energy the photon must be based on.

Display options:

The following visualisation options for 4-dimensional subspaces U are conceivable.
The appropriate illustration is used for each chapter.

5 ®

Figure 2.8: Possible arrangements of subspaces in the wave-field F46

Now the photon is to be abstracted as an electromagnetic wave into a mathematical
rotation in the wave-field F46. Figure 2.9 realises sine-periodically rotating photons,
which are described according to the results of FSM-GTR.

The relativistic relationship applies to the field propagation velocity vectors V4 and
Vs:

2= Vg2 + Vs’ (2.27)

Invisible photon Visible photon
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Figure 2.9: Left: orthogonal to the dimensional plane Dsg an invisible photon
with its rotation mechanism; right: parallel to the dimensional plane Dsg a
rotating visible photon

Figure 2.9 shows several capabilities of a photon at the same time. The current
inertial state of a wave should be marked as a small blue dot. This always rotates
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along its prospective trajectory with the maximum speed Vpmax = C = 299792458 g

The field propagation velocity vectors V4, and Vs in the wave-field F46 change
periodically during its path. With the periodic change of its field propagation
velocities, its space-time behaviour changes dynamically during rotation. This
periodic sequence of its inertial motion in the wave-field F4.¢ shown above will also
transmit its gravitational force starting at the point of contact on the dimensional
plane Dsg in a sinusoidal or wave-like manner into the particle-field Fi3. The
gravitational wave in question is registered.

However, Figure 2.9 shows even more. Depending on whether a photon rotates
orthogonally to the dimensional plane Dsg or not, it can be registered differently.
Photons rotating in the wave-field F;¢ parallel to the dimensional plane Dsg
continuously exchange their photon field with the particle-field F;-3 In addition to the
short and long wavelengths, these photons also contain frequencies visible to the
eye. These photons are used in experiments to measure the speed of light. Such
photons are part of the registering matter and should be summarised as visible
photons. While the so-called invisible photons rotate in the wave-field Fs¢
orthogonally to the dimensional plane Dsg, they can only transmit their photon field
into the particle-field Fi.3 under certain conditions and periodically. Such invisible
photons nevertheless exist even without direct registration by an observer and are
assigned to the hidden matter.

The following quantum principles are postulated for photons:

10)Photons have fields in the wave-field F,4., which oscillate relativistically in space-
time in a contracting and expanding manner, while these are abstracted
macroscopically in the particle-field F;; as field lines.

11)A field propagation velocity V4 in the fourth dimension and the field propagation
velocity Vs in the fifth dimension together form a rotation matrix along the unit

vector eg, which runs parallel to the dimensional plane eg dD,dDs = dA =Dysand
always results in the maximum velocity Vmax = € in @ vacuum with 299792458 E

The relationship applies:
c2=V42 + V5?2

12)The results of length contraction and time dilation reach the factor 1 exactly when
the object velocity V3 = 0. Accordingly, the state V,= 0 with V5 = ¢ applies.

13)The object time top; of a particle depends on its field propagation velocity Vs, which
unfolds in the dimensional plane Dsg.
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14)The length of an emitted field line can be measured in a velocity diagram for all
dimensions D13 in the particle-field Fi3 using the object time ty,; and its field
propagation velocity Vs.

15)The common point of contact for photons, which mediates visible matter, lies
exactly in the dimensional plane Dsg, which is spanned between the fifth and sixth
dimension. The common point of contact for hidden particles lies above or below
the dimensional plane Dsg.

Field body point of view:

Due to the spatially limiting 3-dimensional nature of the particle-field, a single field
body in the patrticle-field F;.3 can only exist in a maximum of 3 dimensions in all
spatial directions. For each spatial direction D4, D, D3 in the particle-field F;.3, only a
single field vector remains for a 4-dimensional subspace U in the wave-field F4, in
which a field can propagate. This is represented in the wave-field F4,¢ as a 1-
dimensional field vector for each of the spatial directions D4, Ds, Dg. Figure 2.10 uses
a blue arrow to represent one of the three possible 4-dimensional subspaces. This
shows a 6-dimensional field vector for the case where one dimension in the field Fj.,
e.g. in the fourth dimension, is omitted for three spatial directions of an object in the
particle-field F;.3.

1-dimensional representation for one of 3-dimensional representation for
the three field vectors in the field F,.¢ three field vectors in the field F_3
D
wave-field
F4-6
1 —V
Ds
particle-field F_3
De

Figure 2.10: 4-dimensional representation of a subspace in the wave-field F4¢

From the point of view of the particle-field F;.3, this representation corresponds to
the wave character of a photon.

For this field body, further 1-dimensional field vectors are conceivable for the fifth
and sixth spatial directions in the field F4. Table 2.1 is intended to show the 6-
dimensional field vector, which at the same time gives the object its 3-dimensional
wave character. This vector describes initial information about how photons can
rotate geometrically in space and how the field exchange with the particle-field Fi-3
works.
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imensions
1 2 3 4 5 6
1 X X X X / /
2 X X X / X /
3 X X X / / X

Table 2.1: The three possible 6-dimensional field vectors for the 3-dimensional
field body view in the particle-field Fi.3

"X" means that a 4-dimensional subspace U is spanned, while "/* means that no
spatial direction is spanned for this dimension.

The six-digit field vector (1) can be labelled with the following indices as the
dimensional plane between particle-field F1.3 and wave-field F4.6: D14/24/34.

Consideration of the field character of photons:

Although the depicted field body already exists with its 1-dimensional field
component, it can only be perceived measurably if it emits fields into the particle-field
Fi-3. This is only possible if part of the field vector lies in the dimensional plane Dsg,
which runs parallel to the particle-field F;.3, in order to exchange its field from the
wave-field F4.6. Another part of the field vector must run in the dimensional plane Dys,
which generates a charge parallel to the electrical potential of the photon field.

This conflict is resolved by giving a field emission a rotating character, as shown in
Figure 2.10 - blue circle. A periodically recurring rotation in the dimensional plane
D4s generates a charge in the photon field, while the dimensional plane Dsg
periodically enables the field exchange between wave-field F4.¢ and particle-field F.s.
The corresponding field vectors in the wave-field F4.6 must be expanded from a 1-
dimensional to a 2-dimensional field component for a possible field exchange, while
one spatial direction from the particle-field in the field F;.3is reduced for this purpose.
The result is a 6-dimensional field vector that runs 2-dimensionally in the dimensional
plane Dys in the wave-field F46 and has a 2-dimensional wave character for each
spatial direction in the particle-field Fi3. Finally, there is a periodically recurring
impulse for its wave maximum from the wave-field into the particle-field. This impulse
is referred to as the matter pulse in the course of this paper.

From the perspective of the particle-field F;.3, this representation corresponds to the
momentum character of a photon.
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Table 2.2 shows the changes in the 4-dimensional subspace for each spatial
direction.

imensions
1 2 3 4 5 6
tracks
4 X X / X X /
5 X / X X X /
6 / X X X X /

Table 2.2: The three possible 6-dimensional field vectors for a periodic 2-
dimensional field exchange in the particle-field Fi_3

The six-digit vectors (4), (5), (6) rotate 2-dimensionally parallel to the dimensional
plane Dys.

The geometric propagation of a field in the particle-field behaves like a longitudinal
wave, while its field body corresponds to a transverse wave. The field forces
mediated via the dimensional plane Dsg are therefore perceived as a rigid body in the
particle-field. The photon with its 2-dimensional momentum is only registered in the
particle-field as a point particle, which in fact it is not. The wave-particle-duality of
photons and particles in the particle-field F;1.3 can be attributed to its self-interaction
with its own 2-dimensional field in the dimensional plane Dsg from the wave-field F4.6.

Note: Wave-particle duality for visible photons

The visible photons, which are measured via a screen, have the field body
representation of vectors two and three from Table 2.1, because these are already
rotating parallel to the dimensional plane Dsg according to Figure 2.9 on the right.
They can only be contracted by an additional field deformation in the form of a
reduction of the field propagation velocity Vs. The rotation parallel to the dimensional
plane Dsg generates a constant gravitational force for its periodic inertial motion,
which only interacts with its surroundings as a space-time quantum. A charge and
thus an electric field to be mediated is ruled out, as there is no rotational component
in the dimensional plane Dys.

In the double-slit experiment, the momentum behavior of a transmitted photon for
the particle-field is determined by recording a point. The distribution of several of
these points visualizes the sinusoidal periodic inertial motion of the transmitted
photons from the wave-field.
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Force equation of the photon:

The following applies to the maximum field force effect of a 4-dimensional subspace
of the photon field in a sinusoidal-periodic contracted equation:

F(t) = Mopj as(t) = Mop; r(t)

G Mop,

with: r(t) = R sin(kt) ; k = —R Rk=c

F(t) = Mop; Robj kobjz sin(kt) = Mopj C kobj sin(kt) (2.28)

F(t) - relativistic force

Moy - Object mass

Robj - Field radius of the object

kooj - Circular frequency of the object
c - Maximum speed Vimax = C

The term sin(kt) in the force equation corresponds to the same mechanism as the
formula (2.20) for the universe. The greatest effect of a mediation of the force F(t) is
achieved when this takes place in the dimensional plane Dsg.

Note for cases where the wavelength is greater than the field radius:

To calculate the forces of objects that have a larger wavelength than their field
radius, e.g. the Earth's gravitational field, the formula must be adapted. If an observer
in the vicinity perceives the surface of a solid which increases the distance to its
actual field radius R, the local deformation of space-time and consequently the acting
surface gravity is reduced due to the increased distance. In such cases, the field
radius R from formula (2.28) is replaced by the volume radius of the object:

The angular frequency k is scaled accordingly to these ratios, as its torque has a
larger volume radius in such cases. The maximum velocity Vmax = ¢ must also be
adapted to the cosmic circular velocity of the object. In this way, the surface gravity of
any object whose wavelength is greater than its field radius' can be determined.
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Energy equation for the photon:

Energy is defined as the sum of all forces that have occurred over the distance As:
E(As) = [3°F(t,s)ds
= F(t, s) specifies the force F(t) depending on its position in space

At the location of the minimum Lorentz transformation of the universe, a photon
propagates at the maximum speed Vs=c. If a certain path As=c At or ds =c dt
corresponds to the path As =c T travelled by a photon with a period length T, the
following applies: ¢ = kR.

The maximum energy transfer takes place during the phase of maximum expansion
in 2 dimensions in the subspaces in the wave-field F4¢ on the dimensional plane Dsg.
With regard to the 3-dimensional rotation in the particle-field Fi3, the photons
oscillate with a sine wave. A further factor sin(kt) from the original orientation axis
must be applied for this.

E(As) = [, F(t,s)sin(kt) ds = [| ¢ F(t)sin (kt)dt = [ Moy Rosy? kob® Sin?(kt) dit

1 .
E(As) = 2 Mobj Roby? Kobi® {[Kobj T — cos(KT) sin(kT)]}

1 :
E(AS) = E Mop; Robj2 kobjz {[kobj T- COS(kT) sm(kT)]} (2.29)
Kobj T - component of the angular momentum
cos(KT) sin(kT) - component of the electromagnetic oscillation

Derivation variant 1:

The mean value of all half wave movements of an electromagnetic oscillation

1
provides with: > [Kobj T — cos(KT) sin(kT)] = 1

E = Mopj Robj? Kobi? mit: ¢2 = R2 k2

E = Moy C? (2.30)
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Derivation variant 2:

In the event that E(S) is given with distances S >> As=c T, then the following
applies for countless integrals over the distance As, which correspond to the
wavelength A of photons:

with: S=nAs neN S>>As applies: — cos(kT) sin(kT) =1

1
E(S) =n E(AS) - n Mob; RObj obj2 [kobj T]

1 bj . M
E(S) =n E(AS) - n Mopb; RObJ ( To 1)2 [kObjT] with: k = GRT

1 G Obj

obj

1 G mgp

E(S) =n E(As) = n Mobj —=—— Rop [kobJT]
obj
G Mop, . Aoby _ A

1 Ao bj _ GM
E(S) =nE(As) =7 >Ng - C2 [Kobj Mobj] —— with: R = —

1
E(S) =n E(AS) = 5 nc [kobj mobj] Aobj

. A

E(S) = n E(As) = 1 n ¢ [Kobj Mop;] Rob; with: R = p

The mean value of all half wave movements with respect to the particle-field Fi.3
with division 1T provides:

S
E(S) =n E(AS) =C kobj Mop; Robj forn = IS =1
E = Robj Mop; kobj c with: c =k R
E = Mobj Robi? Kobj? = Mopj C? (2.31)

1
E = Mobj G {Mop;j Kobj} P (2.32)
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Aobj
E= A_ Robj Mob; kobj c=h fobj [E] =J (233)
obj

Formula for Planck's quantum of action h:

h = Aobj Robj Mobj Kobj = Aobj Mobj C [h] =Js (2.34)
E - Energy Mobj - Object mass

h - Planck’s quantum of action Rowj - Field radius of the object

G - Gravitational constant Koy - Circular frequency of the object

forj - Object frequency c - Maximum speed

Aobj - Wavelength of the object

The index "Uni" for universe can be exchanged with the parameters of the index
"Obj" for object as long as the universal relationships between the mass M, the field
radius R and the angular frequency k are maintained.

G My G Mop;

Muni = Mobj ; Runi = Tm = Ropj = Tj ;

— G MU — G mObj
kUni - RUni3 > kObj Robj3

35 kg
Mobj Kobj = Muni Kuni = constant = 4,0396 10 < (2.35)
m

Robj kobj = Runi kuni = constant = 299792458 g (2.36)
M;i  Mopj k
2uni_ 2B _ onstant = 1,34746 107 —2 (2.37)
Runi Robj m
Aobj Robj Mobj kobj = Auni Runi Muni Kuni = constant = 6,626 1034 Js (2.38)

G My G mgp;
2 = 2 AUni _ 2 Toby (2.39)

Runi Robj

c= 3/ G MUni kUni = Runi kUni >cCc= 31/ G mobj kObj = Robj kobj (240)
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Here is a specific example:
h ¢ h h fopj
Mopj = = = (2.41)
6 {Mopj Kobjt Aobj € Aobj  C*

m 3 k
h =6,626 10 Js; ¢ = 299792458 < Mobi Kobj = /% = 4,0396 10%° ?g;
m2

G=6,67 1011 N—:
kg?

Epho = N fpno = 3,6 10™° J > f = 5,431 10" Hz; A = 552 nm

2
6,626 104 Js - (3\/6,67 10'11Nk%2 '4,0396 1035k§>

Mpho = 2
6,67 10" Nk%z . 4,0396 1035'%9 - 552 nm

Mpho = 4,004 10°3% kg

3610719 a6
Counter sample: Mgy, = = - 4,004 10~ kg

Findings:

=>» The ratio of the mass M to the size of the angular frequency k is confirmed.
=>» The oscillation of the photon behaves like the oscillation of the universe.
=> Confirmation: the mass is proportional to its frequency: M ~ f
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Anqgular momentum L,otation Of photons in the wave-field and particle-field:

The mechanism of an oscillating invisible photon, which rotates orthogonally to the
dimensional plane Dsg, is analysed below. In this case, the relativistic state is
represented by the Lorentz factor 1.

D,
wave-field
Fas particle-field Fy.5
Ds < A
r(a)
D o ______
° T dM cos(a) M, M| m
'2'}""'2'&?\/11"" e I S AR
N P r(a)
v

e
v(a)

no mass adhesion, due
to: dM= M-M*=0
Figure 2.11: Dependencies of the radius r(a), the velocity v(a) of the subspace
U with the gravitational potential dM(a) over a period T

Dy Matter pulse
situation, due to:
wave-field dM=M-M*=M
Fis particle-field F_3
e T >
Ds I v(a)
ey r(a) dM l
. | cos2(a) M
~y COS2(a) M §
r(a) (a N -Yao M.y
M |
' ;
Figure 2.12: Course of a rotation
v(a) = c sin(a) r(a) = R sin(a) a =kt k=const. Te(0;T)

T = period length of a rotating photon
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The classical approach to angular momentum continues to apply in all relativistic
states.

Classical approach: L=mvr (2.42)

The subspace U has a radius r(a), which rotates at a speed v(a) around an axis
through the centre with the inertial mass M*. The length with respect to the inertial
mass M* must be multiplied by 2 to represent the length 2r(a). The angle a only
assumes a maximum angle of 45° during rotation. The inertial mass M* can therefore
have a minimum mass of 0 or a maximum mass of M. dM can be represented
trigonometrically by M cos?(a). The product 21T is required so that r(a) can be mapped
as the surface radius. The approach for the angular momentum with a-dependence is
as follows:

dL(a) = 2 - 2 dM(a) v(a) r(a) da
L(a) = 4m foa M, cos?(a) v(a) r(a) da
with: 0 < a < 45°

n.

45°

L(a) = 411 mMop; v(a) 1() f(? " cos?(a) da = 411 Moy V(a) 1(a) {[% g sin(2a) Jj*'

4

L(a) = 41 mop; v(Q) r(a) {[% g + % sin(2-45°) - [% -0+ % sin(2-0) |}

m+2 m+2
L(a) = 41 mqy; v(a) r(a) (T) = 21T Mo V(Q) r(a) (T) (2.43)

- Angular momentum of a rotating photon in the wave-field at an

any location with field angle a

The mean value of the angular momentum with division g provides:

4+ 8 m+2
L(a)a = 217 May; V(@) 1(a) (—;—) = 217 Moty V() r(@) (——) (2.44)

- Average angular momentum in the wave-field with the following
dependencies: v(a) ~ r(a) ~ sin(a)

The subspace U rotates in relation to the particle-field with its sinusoidal periodicity
orthogonal to the dimensional plane Dss. The maximum momentum transfer takes
place during the phase of maximum expansion of the subspaces. For this purpose,
the angular momentum with respect to the particle-field must be added in proportion
to a further factor sin(a) from the original orientation axis.
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T2\ a4 . , o

+2_ 1 o
L paricie-feia(0) = 21T Moy 1 ¢ (57 {{ 5 c0s%(a) — cos(a) IF

m2. 1 1
L particle-field(@) = 21T Mop; ' C (T) {[5 c0s3(45°) — cos(45°) | — [§ cos3(0) — cos(0) [}

m+2
L pamde-ﬁem(a) =21 Mop; I C (T) 0,077411...

The mean value of the angular momentum in relation to the particle-field with division
1T-

7

m+2 1T
Lo_ particle-field = 2TT Mop; I' C (T) Z 0,077411...

1 , A 1

Lo_ particle-field = 2TT Mgp; I C E with: r = E A~ on
1 h

Lo particle-field = Mobj Aobj C gy = Mobj Aobj Kobj Robj on - om (2.45)

Comparison: (2.34)

Lg particle-field - @verage angular momentum in the particle-field

h - Planck’s quantum of action Rowj - Field radius of the object
Aoy - Wavelength of the object Kooy - Circular frequency of the object
Moy - Object mass c - Maximum velocity

-> Average angular momentum in the particle-field

-> Planck's quantum of action h for the particle-field

Cross-check the above derivation:

m
With: Apnoton = 552 NM; € = 299792458 = Mpnoton = 4,004 10" kg; Ephoton = 3,6 107° J

G mpho _

Rpho3

G mpho

=2,9715 10% m; Kpno =

1
Rpho = 1,0089 10™ S

h = 4,004 10% kg - 552 nm - 299792458 g = 6,626 10 Js
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1
or: h = 4,004 10°® kg - 552 nm - 1,0089 10™ T 2971510 m=~6,626 103 Js

Comparison of Planck's quantum of action from the literature: h = 6,626 10°*Js

Planck's constant h describes the proportional effect of a photon on its
surroundings with a fixed linear increase in energy as a function of frequency. The
FSM derives Planck's constant h for the particle-field via the product of the mass M,
the wavelength A and the maximum field propagation velocity c; or alternatively via
the product of the mass M, the angular frequency k, the wavelength A and the field
radius R. Planck’s constant h can be regarded as an invariant reference quantity with
h = 6,626 103 Js because there is no external force for the universe and its photon
field that could change its angular momentum.

h
Note: for angular momentum with L = o

The mathematically represented angular momentum of a photon corresponds to a
sinusoidal periodic sequence as contraction and expansion of its 6-dimensional
hollow body.

The matter pulse in Figure 2.12 is marked with
m
P = mgpjC [P]= kgg (2.46)

and is located at the point of contact in the dimensional plane Dsg. The mass is
transmitted sinusoidally into the particle-field. All interaction fields are exchanged with
the momentum and the space-time deformation is registered via the gravitational
force.
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Relativistic energy increase — space-time effect on accelerated objects:

The invisible photon in Figure 2.13 on the right experiences an increased field
propagation velocity V4 in the wave-field F4.6, while the field propagation velocity Vs
decreases relativistically. The motion of the circular rotation with sin(kt) shifts into the
dimensional plane Dgs, resulting in an elliptical path. The increased surface area
represents the additional energy required to perform this work. The surface distance
of an object in relation to the hollow sphere model of the field-space increases
accordingly according to Figure 2.4 with:

1
cz- V2 sin3(kt)

This factor corresponds to the relativistic increase in energy during a space-time
deformation relative to an inertial system. Figure 2.13 shows the mechanism for an
object.

Invisible photon not deformed

with: V= 0; Vs = ¢ \ — V.
— V4
D,
wave-field
Fia + Invisible phOtOn
$ deformed with:

- 2_\1/.2Ar
Dsg Vs /c v3?or:
V5 V5 =C S|n(kt)
Ds v
—

Visible photon with: V3 =V5=c¢ particle-field F_3

Figure 2.13: Top left: the invisible photon at rest V3=0, V5 = c; bottom: the
visible photon V3= V5 = c; right: the invisible photon in motion V32> ¢; Vs 2 0

Since the rotation always takes place with the invariant value for the orbital speed
with ¢ and the constant angular frequency k, the object time to, passes more slowly
over the longer rotation path.
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One of the consequences of this is that the matter pulse (Figure 2.12 right) with
P = mqp; ¢ slows down relative to normal time t and is therefore measured at larger
time intervals. The following applies to the relativistic observation of the matter pulse
with a normalised object mass Mop; :

~ obi | I'sin?(k)

o = Mo (2.47)

Space-time has the freedom to deform depending on the elliptical rotation path so
that a balance is restored against the space-time mechanical effects (Figure 2.14).
For a space-time deformation, the gravitational force is thus represented as a
balancing force that requires additional work.

Invisible photon field- Invisible photon,
deformed with: spatiotemporal deformation;
_ . t > toy(t); k = constant;
Vs= \ ¢*-vs*or: Vs = ¢ sin(kt)
Vs = ¢ sin(kt) > —>
\ -V,
Dy
wave-field
F4-6
A 4

Ds

Vs

particle-field F;.3

Figure 2.14: Two possible ways of visualising a space-time deformation with
its field deformation

From the perspective of the inertial system, a so-called gravitational redshift occurs
as soon as an electromagnetic wave moves out of a field-deformed space.

Note: In contrast to an invisible photon, a visible photon does not have a field
propagation velocity V4, and is therefore not capable of additionally deforming a space
segment beyond the Lorentz transformation by a factor of 1 alone.
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Aobj o . .
Aoni(t) = Sin(kD) (gravitational redshift) with a = kt (general) (2.48)
pom. S G
= Mobj = Mobi i ke
Eobi(t) = h f = Mop; C2 L (2.49)
ORY T  sinz(kt) T Y sin?(kt) '
Eoni(t) = e for Vs = c; V4 =0
obj(t) = Mop; C sin?(a = 90°) orVs=c;,Vs=
= 2 ! f - 0; >
Eobj(t) = Mo C S0 < <90°) orVs>0;V,>c

Result for the photon model:

The FSM-GTR for the 6-dimensional field-space describes the space-time
mechanical effects for both cosmology and the microcosm. This confirms the thesis
from Chapter 1 that trigopnometry can be used to describe space-time mechanical
effects. The relativistic relationship to the cosmic inertial system was defined for the
photon field, which fills the entire cosmic space. Thus, for any given physics, a purely
geometric relationship between energy and space-time applies. In this model, the
relationship was also called energy-space-time equivalence. Due to the general
geometry of the wave-field, the relativistic relationships can be transferred to the
microcosm. The photon model is therefore a purely relativistic representation of
space-time, which describes the state of matter with its geometry. Depending on the
geometric position in the wave-field, this model distinguishes between visible and
invisible photons or matter. It also provides an explanation for wave-particle duality.
This photon model provides an alternative derivation for the force, energy, and
momentum equations to the classical model.

Chapter 3 uses the electron and particle model to confirm the geometric conditions
of the 6-dimensional field-space by providing a general formula for the mass and
frequency of all particles. The theoretical results are then compared with
experimental measurements. Finally, the predictions verify the FSM model.



